EFFECT OF THE PRANDTL NUMBER ON THE
CONVECTION FIELD AND THE HEAT TRANSFER
DURING NATURAL CONVECTION

B. M. Berkovskii and V. K. Polevikov UDC 536.252

The spectrum of heat convective structures is analyzed over a wide range of the Prandtl num-
ber. An empirical formula is derived for determining, at any value of the Prandtl number,
the range of the Rayleigh number within which the heat transfer and the temperature field can
be described by the Rayleigh number alone.

During the last few years there has been published a great deal of material on theoretical and experi-
mental studies as well as on numerical analysis of heat transfer during gravity convection in closed and
laterally heated vessels. Several important questions have remained unanswered, however, among them
the effect of the Prandtl number, of the Grashof number, and of the Rayleigh number on the convection
process and on the heat transfer. Following a thorough analysis of the system of equations which describe
heat convection, it has been established in [1] that at high values of the Rayleigh number (Ra) the dominant
velocity and temperature gradients exist in the boundary layer and that, as the Rayleigh number increases,
the thickness of this boundary layer decreases toward zero. It has also been shown there that within the
central region of the cavity there forms a core of flow with a zero horizontal temperature gradient. G.
Batchelor [1] has suggested that, as Ra — =, this core becomes isothermal at the dimensionless tempera-
ture of 1/2 and revolves with a finite constant vorticity which can be identified as the eigenvalue of the
boundary-layer problem. After having solved this problem by the modified Fourier method, G. Poots [2]
concurs with Batchelor's hypothesis. Experimental studies [1-8] and numerical analysis [8-14] of heat
convection in closed and laterally heated vessels have confirmed Batchelor's and Poots' conclusions con-
cerning the general trends in the development of heat convective structures. A great deal of study has
been done concerning the core of flow which forms as the Rayleigh number increases. Most of the results
confirm Batchelor's hypothesis about the core structure. I has been shown that, as Ra — =, the vertical
temperature gradient in the core does not vanish but, instead, stabilizes at some value which is too high
to be disregarded. I has also been shown that the velocities in the core tend toward zero, as the Rayleigh
number increases, which agrees with Batchelor's conclusions. Calculations made in [6-11] indicate that
the heat transfer inside the cavity at a Prandtl number Pr < 1 depends on the Prandtl number as well as
on the Rayleigh number, but only on the Rayleigh number when Pr > 1. These findings have made it fea-
sible, at Pr > 1 and low values of the Grashof number, to solve the linearized system of equations which
describes heat convection with only one governing parameter: the Rayleigh number.

We will note, however, that an experimental study of convective flow and heat transfer in a laterally
heated cavity had to, for various reasons, yield very inaccurate results. Furthermore, the Rayleigh
number in those tests was increased essentially by an increase in the Grashof number at 2 to 4 values of
the Prandtl number. Owing to the lack of appropriate numerical methods, on the other hand, computations
were made for insufficiently wide ranges of the modal parameters. There is a certain danger, therefore,
of a strong bias in the discussion of results.

Recently finite-difference schemes have been developed which remain very stable as the values of the
modal parameters increase, and this offers new possibilities for solving convection problems. The authors
have tried to establish the effect of the Prandtl number and of other criterial groups on the convective
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structures and on the heat transfer during natural
convection. We analyzed the problem of steady-state
heat convection by gravity in a square cavity with
lateral heating over a wide range of parameter values
(0 <Pr <10° 0 <Ra < 10!, The computations were
made according to the second~order monotonic finite-
difference scheme.
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1. We consider a two-dimensional steady-state

convective flow of a viscous incompressible fluid in

a square region bounded by impermeable solid walls.

We introduce Cartesian coordinates x, y with the

origin at the lower left-hand corner of the square.

The x-axis runs horizontally to the right, the y-axis

runs vertically up. The system of dimensionless heat

convection equations describing the steady state is

_

Fig. 1. Isotherms (a2, c, ) and flow isolines then [14].
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Here T(x, y) denotes the temperature, w(x, y) denotes the vorticity, ¥(x, y) denotes the flow function,
u(x, y) and v(x, y) denote the horizontal and the vertical velocity components, Pr is the Prandtl number,
and Gr is the Grashof number.

The velocity components and the flow function are assumed zero at the region boundary:
ulx, Yh=v(x, Y=9(, y) =0 at x=0, x =1, y =0, y=1. (1.2)
The boundary conditions for the temperature are stipulated as follows:
T(x, yy==1 at x=0;
T(x, y) =0 at x==1; (1.3)
Tx, yy=1—x at y=0, y=1.

2. System (1.1) with the boundary conditions (1.2) and (1.3) was solved numerically by the grid meth-
od. A second-order conservative monotonic finite-difference scheme was designed for this purpose, mak-
ing use of concepts developed in [15, 16]. We note that each equation in system (1.1) is of the form

2 (mucp———na—(P —;——a myg —n @) =F, (2.1)
ox Ox oy dy
where m and n are constants. The binomial 3/8x [mup—n(@¢/0x)] = [0f(x, y)/9x] was approximated by the
balance method [16] as follows:
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Fig. 2. Isotherms (a, c¢) and flow isolines (b, d) characteriz-
ing the development of heat convective structures within the

high range of the Prandtl number, with Gr = 10%: a) and b) Pr
= 10%, ¢) and d) Pr = 10% numbers next to the curves indicate

the values of T and — .
Fig. 3. Effect of modal parameters on the convection rate

and the heat transfer rate: 1) and 1') Pr = 1072, 2) and 2')
Pr=1, 3) and 3') Pr = 10, 4) Pr = 10%, 5) Pr = 10%
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and analogously the other functions and differential operators in (2.1). The difference analog of Eq. (2.1)

can be written in the explicit form:

Qr,p = (C19141,0 T+ CaPia,k + Co@iyns1 T CPiyno1 + Fi )M, (2.2)

where
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Fig. 4. Vertical temperature gra- Here we introduced a uniform spatial grid with h-steps.

dient in the core a, as a function c_’f The function at the grid nodes was denoted by ¢; | = ¢ (ih, kh)

the modal parameters: 1) Pr =107, wherei=0,1,2,..., Iandk=0,1,2,...,K. The boundary
2) 1072, 3) 1.0, 4) 10, 5) 102, conditions for the flow function and for the temperature in the

difference form were put in the difference form:
Yo, = Uy = $i0 = ¥  =0; (2.3)

Ton=1Trz=0,T,,=Tix=1—ih
The boundary conditions for the vorticity were determined approximately, with an accuracy o(h?), by ex-
panding the flow function into Taylor series at points adjacent to the boundary and by taking into account
Egs. (1.1) with conditions (1.2). At i = 0 these boundary conditions were found to be

8b, , —
Do = — _?22_’1?"’2_" , (2.4)

and analogously at the other boundaries.

The difference analog of system (1.1) was obtained according to scheme (2.2) with the boundary con-
ditions (2.3)-(2.4) and then solved iteratively by the Euler method. In order to improve the convergence
of the iteration process, we introduced relaxation parameters. As the first approximation we selected
either the zero distibution of the function or the solution obtained for a different value of the modal para-
meter. The boundary values of vorticity (2.4) were computed after each iteration step.

The heat transfer through the cavity boundaries was characterized by the Nusselt number Nu = ([Nu™|
+[Nu71)/2. Here

. .
N = | ﬂ) d, Nu":j 91_) di, 2.5)
N on Jr+ on /p-

rt :

-

with It and I'~ denoting the boundary segments with function 8T/8@ respectively positive and negative. The
derivative along the normal to the region boundary was approximated according to the second-order three-
point formula. The integration in (2.5) was performed according to the Simpson formula,.

In order to estimate the convection rate, we computed the quantity Ziy+| representing the sum of
local extrema of the difference function [y; || inside the square cavity.
?

The computations were made on a uniform 41 X 41 grid. For studying the convection with large ve-
locity and temperature gradients, we also used a nonuniform 41 X 41 grid with steps varying from 1/80
to 1/20, depending on the magnitude of these gradients. A comparison of the results with control values
obtained on uniform grids 21 X 21 and 31 X 31 confirmed the sufficiently high accuracy of the results. All
operations were performed on a "Minsk-32" computer.

3. The effect of the Prandtl number on the development of convective structures and on the heat
transfer at a fixed value of the Grashof number is shown in Fig. 1. Since the solution to the problem was
found symmetric with respect to the center of the cavity, hence the isotherms and the flow isolines in one
half of the square could be extrapolated into the entire region.

At low values of the Prandtl number (Fig. 1) the convection structure is unicellular and covers the
entire region. The vortex center coincides with the cavity center. The streamlines here are almost con-
centric circles. The flow is uniform over the entire cell. The isotherms are almost straight lines paral-
lel to the vertical edges. The horizontal temperature gradient in the cavity is approximately equal to unity,
the vertical temperature gradient in the cavity is approximately equal to zero. As the Prandtl number in-
creases, two vortices form at the center and move along the centerline of the square, each in the opposite
direction. A closed boundary layer forms within which the dominant velocity and temperature fields are
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concentrated. At the cavity center there forms a core of flow. The isotherms bend appreciably, especially
at the ends. In the core region they become straight and horizontal, indicating that the horizontal temper-

ature gradient inside the core decreases to zero.

At high values of the Prandtl number (Fig. 2) each vortex splits near the edges of the square into two
new cells which, as the Prandtl number increases, separate from one another and move along the vertical
edges toward the respective upper and lower corner. The larger of each pair tends toward the lower cor-
ner of the cavity at the hot edge and toward the upper corner of the cavity at the cold edge. The thickness
of the boundary layer decreases, as Pr — «, but slower than when the Grashof number increases at a fixed
Prandtl number. The generated flow core expands appreciably. As the Prandtl number increases, the
velocities here become negligibly lower than in the boundary layer. The temperature gradients in the
boundary layer continue to increase and they increase faster than when Gr — =, :

An analysis of the curves in Fig. 3 will show how the convection rate and the heat transfer rate across
the boundaries depend on the Prandtl number and on other governing parameters. At low values of the
Prandtl number, heat is transmitted essentially by conduction. Convection is characterized here by 2 high
flow velocity which, as Pr — 0, approaches some constant limit and this limit is a function of the Grashof
number. As the Prandtl number increases, convection takes over the major role in the heat transfer. The
heat transfer rate across boundaries increases according to a power law. The convection rate tends to
decrease to zero, as Pr — «, while an increase in the Grashof number tends to increase the convection

rate.

Of considerable interest are studies made of heat transfer and temperature fields in a closed cavity
during a correlated variation in the governing parameters. Curves have been plotted in Fig. 4 which de-
scribe the trend of the vertical temperature gradient in the flow core under various convection modes. As
the Rayleigh number increases, the vertical temperature gradient in the core increases up to its maxi-
mum value of approximately 0.6 to 0.7. At the same time, the rate of increase of this gradient is a func-
tion of the Prandtl number. As a result of the increase in the Rayleigh number, which follows an increase
in the Prandtl number, the vertical temperature gradient in the core reaches its maximum and then mono-
tonically decreases to zero. At the same time, as Gr — «, this gradient stabilizes about a constant value
which is a function of the Prandtl number and varies from 0 to 0.7, Thus, the core becomes isothermal
when Pr — «, An increase in the Grashof number results in a constant vertical temperature gradient too
large to allow the core to be regarded as isothermal. In both cases there is almost no flow noted inside

the core.

Calculations have shown that at certain critical values of the Rayleigh number (Rax) there occurs a
sudden qualitative change in the development of heat transfer and in the temperature field structures. At
subcritical values of the Rayleigh number the heat transfer rate and the temperature field are functions of
the Rayleigh number alone. When Ra > Rax, however, then they become also functions of the Prandil num-
ber. The points in Fig. 3 and 4 where the curves branch out correspond to the critical values of the
Rayleigh number. I has been found that the critical Rayleigh number is a continuous and bilaterally unique
function of the Prandtl number. The relation between both can be described approximately by the empiri-
cal formula

Ra, =107 PHD'=L15 o 1074 < Pr <105, 3.1)

The results obtained here lead to the following conclusion. For an arbitrary fixed value of the Prandil
number Pr; there exists such a critical Rayleigh number Ra* (Pr;)determined according to formula (3.1)
that in the range Pr > Pry; with Ra < Rax the heat transfer rate and the temperature field can be described
with a single parameter, namely the Rayleigh number. Consequently, at low values of the Prandtl number,
the heat transfer rate and the temperature field are functions of the Rayleigh number within a very narrow
range of low values of the Rayleigh number. At high values of the Prandtl number these process charac-
teristics are determined by the Rayleigh number alone within 2 much wider range.

NOTATION
Ra is the Rayleigh number;
Pr is the Prandtl number;
X,y are the space coordinates;
T is the temperature;
w is the vorticity;
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is the flow function;

are the velocity components;

is the Grashof number;

are constants;

is the universal designation for functions T, w, and ¥;
is the grid analog of function ¢;

is the grid step;

is the Nusselt number;

is the normal at the cavity boundary;

is the critical Rayleigh number.
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