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The s p e c t r u m  of heat  convect ive s t r u c t u r e s  is analyzed over  a wide range  of the Prand t l  n u m -  
ber .  An e m p i r i c a l  fo rmula  is der ived  for  de te rmining ,  at  any value of the Prandt l  number ,  
the range of the Rayleigh num ber  within which the heat  t r a n s f e r  and the t e m p e r a t u r e  field can 
be desc r ibed  by the Rayleigh number  alone. 

During the las t  few y e a r s  there  has been published a g r ea t  deal  of m a t e r i a l  on theore t ica l  and e x p e r i -  
men ta l  s tudies  as  well  as  on numer i ca l  ana lys i s  of heat  t r a n s f e r  during g rav i ty  convection in closed and 
l a te ra l ly  heated ve s s e l s .  Severa l  impor tan t  quest ions  have remained  unanswered,  however ,  among them 
the effect  of the Prand t l  number ,  of the G r a s h o f  number ,  and of the Rayle igh number  on the convection 
p r o c e s s  and on the heat  t r ans f e r .  Following a thorough ana lys i s  of the s y s t e m  of equations which desc r ibe  
heat  convection,  it has been es tab l i shed  in [1] that at  high values  of the Rayleigh number  (Ra) the dominant  
ve loci ty  and t e m p e r a t u r e  grad ien ts  ex is t  in the boundary l a y e r  and that,  as  the Rayleigh number  i n c r e a s e s ,  
the th ickness  of this  boundary l aye r  d e c r e a s e s  toward zero .  It has a lso  been shown there  that within the 
cen t ra l  region of the cavi ty  the re  f o r m s  a co re  of flow with a ze ro  hor izonta l  t e m p e r a t u r e  gradient .  G. 
Ba tche lor  [1] has suggested that,  as  Ra ~ ~,  this core  becomes  i so the rma l  at  the d imens ion les s  t e m p e r a -  
ture  of 1/2  and r evo lves  with a finite constant  vor t ic i ty  which can be identified as  the e igenvalue of the 
b o u n d a r y - l a y e r  p rob lem.  Af ter  having solved this p rob l em by the modif ied F o u r i e r  method,  G. Poots  [2] 
concurs  with B a t c h e l o r ' s  hypothesis .  Exper imen ta l  s tudies  [1-8] and numer i ca l  ana lys i s  [8-14] of heat 
convect ion in c losed and l a te ra l ly  heated v e s s e l s  have conf i rmed  B a t c h e l o r ' s  and Poots '  conclusions con-  
cerning the gene ra l  t rends  in the development  of heat  convect ive  s t ruc tu res .  A g rea t  deal  of study has 
been clone concerning the co re  of flow which f o r m s  a s  the Rayle igh number  inc reases .  Most of the r e su l t s  
conf i rm B a t c h e l o r ' s  hypothesis  about the co re  s t ruc tu re ,  It has been shown that,  as  Ra --* oo, the ve r t i ca l  
t e m p e r a t u r e  grad ien t  in the co re  does not vanish  but, instead,  s tab i l izes  at  some value which is too high 
to be d i s rega rded .  It has a lso  been shown that  the ve loc i t i es  in the core  tend toward ze ro ,  as  the Rayleigh 
n u m b e r  i n c r e a s e s ,  which a g r e e s  with B a t c h e l o r ' s  conclusions.  Calculat ions made  in [6-11] indicate that 
the heat  t r a n s f e r  inside the cavi ty  at  a P rand t l  number  P r  < 1 depends on the P rand t l  numbe r  as  wel l  as  
on the Rayleigh number ,  but only on the Rayleigh number  when P r  > 1. These  findings have made  it  f e a -  
s ible ,  at  P r  > 1 and low values  of the Gra s ho f  number ,  to solve the l inear ized  s y s t e m  of equations which 
d e s c r i b e s  heat  convect ion with only one governing p a r a m e t e r :  the Rayle igh number .  

We will  note, however ,  that  an expe r imen ta l  study of convect ive flow and heat  t r a n s f e r  in a la te ra l ly  
heated cavi ty  had to, for  va r ious  r e a s o n s ,  y ie ld  ve ry  inaccura te  resu l t s .  F u r t h e r m o r e ,  the Rayleigh 
n u m b e r  in those t e s t s  was  i nc rea sed  essen t ia l ly  by an i nc r ea se  in the Gra sho f  number  at  2 to 4 va lues  of 
the P rand t l  number .  Owing to the lack of app rop r i a t e  numer i ca l  methods ,  on the o ther  hand, computat ions  
w e r e  made  for  insufficiently wide r anges  of the modal  p a r a m e t e r s .  The re  is a ce r t a in  danger ,  t he re fo re ,  
of a s t rong bias  in the d i scuss ion  of r e su l t s .  

Recent ly  f in i te -d i f fe rence  s chem es  have been developed which r e m a i n  v e r y  s table  as  the values  of the 
modal  p a r a m e t e r s  i n c r e a s e ,  and this o f fe r s  new poss ib i l i t i e s  fo r  solving convect ion p r o b l e m s .  The au thors  
have t r ied  to es tab l i sh  the effect  of the P rand t l  numbe r  and of o the r  c r i t e r i a l  groups  on the convect ive 
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Fig. 1. I s o t h e r m s  (a, e, e) and flow iso l ines  
(b, d, f) c h a r a c t e r i z i n g  the deve lopment  of heat  
convect ive  s t r u c t u r e s  within the low to med ium 
range  of the P rand t l  number ,  with G r  = 10 5. a) 
and b) P r  = 10 4 ,  c) and d) P r  = 1, e) and f) 
P r  = 10; number s  next to the cu rves  indicate 
the values  of T and - - G  

s t r u c t u r e s  and on the heat  t r a n s f e r  during na tura l  
convection.  We analyzed the p rob l em of s t e ady - s t a t e  
heat  convect ion by g rav i ty  in a squa re  cavi ty  with 
l a t e r a l  heating ove r  a wide range  of p a r a m e t e r  va lues  
(0 < P r  < 105, 0 < Ra < 101~ The computa t ions  were  
made  accord ing  to the s e c o n d - o r d e r  monotonic f in i te -  
d i f fe rence  scheme.  

1. We cons ide r  a two-d imens iona l  s t eady - s t a t e  
convec t ive  flow of a v i scous  i ncompres s ib l e  fluid in 
a square  region bounded by i m p e r m e a b l e  solid walls .  
We introduce Car t e s i an  coord ina tes  x, y with the 
or ig in  at  the lower  lef t -hand c o r n e r  of the square .  
The x - a x i s  runs  hor izonta l ly  to the r ight ,  the y - a x i s  
runs  ve r t i ca l ly  up. The s y s t e m  of d imens ion l e s s  heat  
convect ion equations desc r ib ing  the s teady s ta te  is 
then [14]. 

c)~.  OT O, OT 1 ( O~T 02T ) 
O 9 O x ~ O x  " Og Pr Ox ~ -F ; Og 2 

cgg" Ox --O'~ " Oy ax ~ ': 09 ~ ~ G r ~ ;  (1.1) 

02@ ~ O~q~ ~, { Oq~ aq~ - v t 
, . - - = u ,  . 

Ox 2 Oy 2 \Oy  Ox ! 

Here  T(x, y) denotes  the t e m p e r a t u r e ,  w(x, y) denotes  the vor t i c i ty ,  r y) denotes  the flow function, 
u(x, y) and v(x, y) denote the hor izonta l  and the ve r t i c a l  ve loc i ty  components ,  P r  is the P rand t l  nt tmber,  
and G r  is the Gra sho f  number .  

The ve loc i ty  components  and the flow function a r e  a s s u m e d  ze ro  at the region boundary:  

U(X, y)=V(X, y )= ~ (X ,  I])--0 at x--O, x = l ,  9 = 0 ,  y= l . .  

The boundary condit ions for  the t e m p e r a t u r e  a r e  s t ipulated as  follows: 

T(x, y)=:l  at x = 0 ;  

T(x,  y ) - :0  ar Z =:1; 

T(X, y ) = l - - x  at y=O,  y---1. 

od. 

(1.2) 

(1.3) 

2. Sys tem (1.1) with the boundary condit ions (1.2) and (1.3) was  solved numer i ca l ly  by the gr id  m e t h -  
A s e c o n d - o r d e r  conse rva t ive  monotonic f in i t e -d i f fe rence  scheme  was  designed for  this pu rpose ,  m a k -  

ing use  of concepts  developed in [15, 16]. We note that  each equation in s y s t e m  (!.1) is of the f o r m  

Ox ax 

where  m and n a r e  constants .  The b inomial  8/Ox [mu~--n@~/Ox)] = [Of(x, y)/Ox] was  approx ima ted  by the 
ba lance  method [16] as follows: 

x 1 Y ! Y 1 

Ox x 
x 1 Yk--  1 9 I i - 1  

h (1Hq~i+l~ k 
i+ T'  k i+ ~-,k i§ T,k + ,~ 

-]- nz~i,k 
2 2 
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2n q- mlui+ ~_k I h h 

u 1 --]u 1 I i -  T,~ i -  ~.k 
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Fig .  2. I s o t h e r m s  (a, c) and flow i so l ines  00, d) c h a r a c t e r i z -  
ing the d e v e l o p m e n t  of  hea t  convec t ive  s t r u c t u r e s  wi thin  the 
h igh range  of  the P r a n d t l  n u m b e r ,  with G r  = 10~: a) and b) P r  
= 102, c) and d) P r  = 104; n u m b e r s  next  to the c u r v e s  indicate  
the  va lues  of  T and --  $. 

F ig .  3. Ef fec t  of  m o d a l  p a r a m e t e r s  on the convec t ion  r a t e  
and the hea t  t r a n s f e r  ra te :  1) and 1') P r  = 10 -2, 2) and 2') 
P r  = 1, 3) and 3')  P r  = 10, 4) P r  = 102, 5) ~)r = 104. 

:s 

i -~.k  i -  --,k 2n ~ 
- -  m ( P i - l ' h  2 ~ 2n + m lu t f h 

i-- T , h  

and ana logous ly  the o t h e r  funct ions  and d i f fe ren t i a l  o p e r a t o r s  in (2.1). 
can  be wr i t t en  in the exp l ic i t  f o r m :  

~,k = (cl,i+l,k + c~(pi_l,h + cacti,h+1 + c~Ti,k_i ~- F,,h)/M, 

] h 
m 

The d i f f e rence  analog  of  Eq. 

w h e r e  

C 1 
2n ~ 

2n + m [ui+ -~,k Jh 2 

C~= 2 n + m ] u  1 Ih  + m h  2 

v 1 - I v  [ 
~,k+ i ,k+ 1 

2n2 mh T Y 
ca = 2n + m ]Vl,k+ . �89 [h 

u , - l u  I 
- -  mh 

v ~ + f v  ~J 
2 n  2 i ,k-- --2-- i ,k-- 

c 4 =  2 n + m l v  i [ h + m h  2 
, tk--  - -  

2 

M = X c  ]. 

i 

(2.1) 

(2.2) 
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a We then used  the a v e r a g e s  

0,# ~ k  ! 2 3 i+ ~-,~ h 

/ ~ ' ~ ' ~ ~ d  *Gh+i + *~+i,k+i -- *i,k_l -- *i+i,h_i 
0,z ' -- 4h 

/ ~ ' ~ " "  and analogously  for  
0 ~' 8 f l f /8  l , V I , V I " 

Fig. 4. Ver t i ca l  t e m p e r a t u r e  g r a -  Here  we introduced a un i form spat ia l  gr id  with h - s t eps .  
dient  in the co re  a ,  as  a function of The function at the g r id  nodes was  denoted by ~i, k = ~0 (ih, kh) 
the modal  p a r a m e t e r s :  1) P r  = 10 "4, where  i = 0, 1, 2 . . . . .  I and k = 0, 1, 2 . . . . .  K. The boundary 
2) 10 -2, 3) 1.0, 4) 10, 5) 10 2. conditions for  the flow function and for  the t e m p e r a t u r e  in the 

d i f fe rence  f o r m  w e r e  put in the d i f fe rence  fo rm:  

~o,~ : ~s,k : ~,o = ~t,K =0;  (2.3) 

To, ~ = 1, TLk = O, Ti ,  o = Tf.K = I - -  ih. 

The boundary conditions for  the vor t ic i ty  we re  de te rmined  approx ima te ly ,  with an accu racy  o(h2), by ex -  
panding the flow function into T a y l o r  s e r i e s  at  points  adjacent  to the boundary and by taking into account  
Eqs. (1.1) with conditions (1.2). At i = 0 these  boundary conditions were  found to be 

8~l,h -- ~2,~_ , (2.4) 
%,~ : - -  2h 2 

and analogously a t  the o ther  boundaries .  

The d i f fe rence  analog of s y s t e m  (1.1) was obtained accord ing  to s cheme  (2.2) with the boundary con-  
dit ions (2.3)-(2.4) and then solved i t e ra t ive ly  by the Eu le r  method.  In o r d e r  to improve  the convergence  
of the i te ra t ion  p r o c e s s ,  we introduced re laxa t ion  p a r a m e t e r s .  As the f i r s t  approx imat ion  we se lec ted  
e i the r  the ze ro  dist ibution of the function o r  the solution obtained for  a d i f ferent  value of the modal  p a r a -  
me t e r .  The boundary values  of vor t i c i ty  (2.4) were  computed a f t e r  each i te ra t ion  step. 

The heat  t r a n s f e r  through the cavi ty  boundar ies  was c h a r a c t e r i z e d  by the Nusse l t  number  Nu = (INu+l 
+ INu3)/2. Here  

INu+= ~ \ O n ] r +  ,; ( ~ ) r -  
(2.5) 

D + D- 

with F + and F- denoting the boundary segments with function 0T/0ff respectively positive and negative. The 
derivative along the normal to the region boundary was approximated according to the second-order three- 
point formula. The integration in (2.5) was performed according to the Simpson formula. 

In order to estimate the convection rate, we computed the quantity ~Ir representing the sum of 
local extrema of the difference function I~bi, k I inside the square cavity. 

The computations were made on a uniform 41 x 41 grid. For studying the convection with large ve- 
locity and temperature gradients, we also used a nonuniform 41 x 41 grid with steps varying from 1/80 
to 1/20, depending on the magnitude of these gradients. A comparison of the results with control values 
obtained on uniform grids 21 x 21 and 31 x 31 confirmed the sufficiently high accuracy of the results. All 
operations were performed on a "Minsk-32" computer. 

3. The effect of the Prandtl number on the development of convective structures and on the heat 
transfer at a fixed value of the Grashof number is shown in Fig. 1. Since the solution to the problem was 
found symmetric with respect to the center of the cavity, hence the isotherms and the flow isolines in one 
half of the square could be extrapolated into the entire region. 

At low values of the Prandtl number (Fig. 1) the convection structure is unicellular and covers the 
en t i re  region. The vor t ex  cen te r  coincides  with the cavi ty  center .  The s t r e a m l i n e s  he re  a r e  a lmos t  con -  
cent r ic  c i r c l e s .  The flow is un i form o v e r  the en t i re  cell.  The i s o t h e r m s  a r e  a lmos t  s t r a igh t  l ines p a r a l -  
lel  to the ve r t i c a l  edges.  The hor izonta l  t e m p e r a t u r e  g rad ien t  in the cavi ty  is app rox ima te ly  equal to unity, 
the ve r t i c a l  t e m p e r a t u r e  gradient  in the cavi ty  is approx ima te ly  equal to zero .  As the Prand t l  number  in-  
c r e a s e s ,  two vo r t i c e s  f o r m  at  the cen te r  and move  along the cen te r l ine  of the square ,  each  in the opposi te  
direct ion.  A closed boundary l a y e r  f o r m s  within which the dominant  ve loci ty  and t e m p e r a t u r e  f ields a r e  
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concentra ted .  At the cavi ty  cen te r  there  f o r m s  a core  of flow. The i s o t h e r m s  bend apprec iab ly ,  espec ia l ly  
at  the ends. In the co re  region they become  s t ra igh t  and hor izontal ,  indicating that  the hor izontal  t e m p e r -  
a tu re  grad ien t  inside the core  d e c r e a s e s  to zero.  

At high values  of the P rand t l  number  (Fig. 2) each  vor t ex  spl i ts  n e a r  the edges  of the square  into two 
new ce l l s  which, as the P rand t l  number  i n c r e a s e s ,  s epa ra t e  f r o m  one another  and move  along the ve r t i c a l  
edges  toward the r e spec t ive  upper  and lower  corner .  The l a r g e r  of each  p a i r  tends toward the lower  c o r -  
n e r  of the cavi ty  at  the hot edge and toward the uppe r  c o r n e r  of the cavi ty  at  the cold edge. The th ickness  
of the boundary l a y e r  d e c r e a s e s ,  as  P r  ~ r but s lower  than when the Grasho f  number  i n c r e a s e s  a t  a fixed 
Prand t l  number .  The genera ted  flow core  expands apprec iably .  As the Prand t l  number  i n c r e a s e s ,  the 
ve loc i t i es  he re  become negligibly lower  than in the boundary layer .  The t e m p e r a t u r e  grad ien ts  in the 
boundary l a y e r  continue to i nc rea se  and they i nc rea se  f a s t e r  than when G r  ~ ~. 

An ana lys i s  of the cu rves  in Fig. 3 will  show how the convect ion ra te  and the heat  t r a n s f e r  r a t e  a c r o s s  
the boundar ies  depend on the Prand t l  number  and on o ther  governing p a r a m e t e r s .  At low values  of the 
P rand t l  number ,  heat  is t r ansmi t t ed  essen t i a l ly  by conduction. Convection is c h a r a c t e r i z e d  he re  by a high 
flow veloci ty  which, as  P r  --* 0, app roaches  some  constant  l imi t  and this l imi t  is a function of the Grasho f  
number .  As the Prandt l  num be r  i n c r e a s e s ,  convect ion takes  ove r  the m a j o r  ro le  in the heat  t r ans fe r .  The 
heat t r a n s f e r  ra te  a c r o s s  boundar ies  i n c r e a s e s  accord ing  to a power  law. The convect ion ra te  tends to 
d e c r e a s e  to ze ro ,  as  P r  --~ co, while an i nc rea se  in the Gra sho f  number  tends to i nc rea se  the convect ion 
ra te .  

Of cons iderab le  i n t e r e s t  a r e  s tudies  made  of heat  t r a n s f e r  and t e m p e r a t u r e  f ields in a c losed cavi ty  
during a c o r r e l a t e d  va r i a t ion  in the governing p a r a m e t e r s .  Curves  have been plotted in Fig. 4 which de -  
s c r ibe  the t rend of the ve r t i c a l  t e m p e r a t u r e  grad ien t  in the flow core  under  va r ious  convect ion modes .  As 
the Rayle igh num ber  i n c r e a s e s ,  the ve r t i c a l  t e m p e r a t u r e  gradient  in the co re  i n c r e a s e s  up to i ts  m a x i -  
m u m  value of approx ima te ly  0.6 to 0.7. At the s a m e  t ime ,  the ra te  of i nc rea se  of this gradient  is a func-  
t ion of the P rand t l  number .  As a r e su l t  of the i nc rea se  in the Rayle igh number ,  which follows an i nc rea se  
in the P rand t l  number ,  the ve r t i c a l  t e m p e r a t u r e  gradient  in the co re  r e aches  i ts  m a x i m u m  and then m o n o -  
tonical ly  d e c r e a s e s  to zero.  At the s ame  t ime ,  as  G r  --* ~ ,  this gradient  s tab i l i zes  about a constant  value 
which is a function of the P rand t l  num be r  and v a r i e s  f r o m  0 to 0.7. Thus,  the co re  becomes  i so the rma l  
when P r  --~ 0% An inc rea se  in the Gra s ho f  number  r e su l t s  in a constant  ve r t i c a l  t e m p e r a t u r e  gradient  too 
l a rge  to allow the co re  to be r ega rded  as  i so the rmal .  In both c a s e s  the re  is a l m o s t  no flow noted inside 
the core .  

Calculat ions have shown that  at c e r t a in  c r i t i ca l  va lues  of the Rayleigh number  (IRa.) there  occu r s  a 
sudden qual i ta t ive change in the development  of heat  t r a n s f e r  and in the t e m p e r a t u r e  field s t ruc tu res .  At 
subcr i t i ca l  va lues  of the Rayle igh num ber  the heat  t r a n s f e r  r a t e  and the t e m p e r a t u r e  field a r e  functions of 
the Rayleigh number  alone. When Ra > R a . ,  h o w e v e r ,  then they become a lso  functions of the Prand t l  num-  
ber .  The points in Fig. 3 and 4 where  the c u rve s  b ranch  out co r r e spond  to the c r i t i ca l  va lues  of the 
Rayle igh number .  E has been found that  the c r i t i c a l  Rayle igh number  is a continuous and b i l a te ra l ly  unique 
function of the P rand t l  number .  The re la t ion  between both can be desc r ibed  approx ima te ly  by the e m p i r i -  
ca l  fo rmula  

Ra, =10 ~ for 10 -4 < Pr <10 a. (3.1) 

The r e su l t s  obtained he re  lead to the following conclusion.  F o r  an a r b i t r a r y  fixed value of the Prand t l  
n u m b e r  P r  1 the re  e x i s t s  such a c r i t i ca l  Rayleigh number  Ra* (Pr l )de te rmined  accord ing  to fo rmula  (3.1) 
that  in the range P r  > P r  I with Ra < R a ,  the heat  t r a n s f e r  ra te  and the t e m p e r a t u r e  field can be desc r ibed  
with a single p a r a m e t e r ,  namely  the Rayleigh number .  Consequently,  a t  low va lues  of the Prand t l  number ,  
the heat  t r a n s f e r  r a t e  and the t e m p e r a t u r e  field a r e  functions of the Rayle igh number  within a ve ry  na r row 
range  of low va lues  of the Rayleigh number .  At high va lues  of the P rand t l  numbe r  these  p r o c e s s  c h a r a c -  
t e r i s t i c s  a r e  de t e rmined  by the Rayleigh number  alone within a much  wide r  range.  

Ra  

P r  
X, y 
T 

is the Rayle igh number ;  
is the P rand t l  number ;  
a r e  the space  coord ina tes ;  
is  the t e m p e r a t u r e ;  
is the vor t ic i ty ;  
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h 
Nu 
n 

Ra ,  

is the flow function; 
a re  the veloci ty  components;  
is the Grashof  number;  
a r e  constants;  
is the un iversa l  designation for  functions T,  w, and r 
is the gr id  analog of function ~; 
is the gr id  step; 
is the Nussel t  number;  
is the normal  at the cavity boundary; 
is the c r i t i ca l  Rayleigh number.  
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